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ABSTRACT
There are various useful metrics for finding the distance
between two points in Euclidean space. Metrics for finding
the distance between two rigid body locations1 in Euclidean
space depend on both the coordinate frame and units
used. A metric independent of these choices is desirable.
This paper presents a metric for a finite set of rigid body
displacements. The methodology uses the principal frame
(PF) associated with the finite set of displacements and
the polar decomposition to map the homogenous transform
representation of elements of the special Euclidean group
SE(N-1) onto the special orthogonal group SO(N). Once the
elements are mapped to SO(N) a bi-invariant metric can
then be used. The metric obtained is thus independent of
the choice of fixed coordinate frame i.e. it is left invariant.
This metric has potential applications in motion synthesis,
motion generation and interpolation. Three examples are
presented to illustrate the usefulness of this methodology.
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1. INTRODUCTION
A metric is used to measure the distance between two points
in a set. There are various metrics for finding the distance
between two points in Euclidean space. However, finding
the distance between two locations of a rigid body is still
the subject of ongoing research, see [13, 15, 9, 14, 11, 5,
7, 17, 4]. For two locations of a finite rigid body (either
SE(2)-planar or SE(3)-spatial) all metrics yield a distance
which is dependant upon the chosen fixed or moving frames
of reference and the units used, see [15, 14]. But, a metric
independent of these choices, referred to as bi-invariant, is
desirable. Metrics independent of the choice of coordinate
frames and the units used do exist on SO(N), see Larochelle
[11]. One bi-invariant metric defined by Ravani and Roth
[16] defines the distance between two orientations of a
rigid body as the magnitude of the difference between the
associated quaternions. The techniques presented here are
based on the polar decomposition (PD) of the homogenous
transform representation of the elements of SE(N) and
the principal frame (PF ) associated with the finite set of
rigid body displacements. The mapping of the elements
of the special Euclidean group SE(N-1) to SO(N) yields

∗Address all correspondence to this author
1Location of a rigid body prescribes both its position and
orientation.
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Figure 1: SE(N-1) to SO(N)

hyperdimensional rotations that approximate the rigid body
displacements. A conceptual representation of the mapping
of SE(N-1) to SO(N) is shown in Figure 1. Once the
elements are mapped to SO(N) distances can then be
evaluated by using a bi-invariant metric on SO(N). In
the planar case the elements of SE(2) are mapped onto
the SO(3) as shown in Figure 2. The resulting PD
based projection metric on SE(N-1) is left invariant(i.e.
independent of the choice of fixed frame F).

2. METRIC ON SO(N)
The distance between elements in SO(N) can be determined
by using the metric suggested by Larochelle[10]. The
distance between two elements [A1] and [A2] in SO(N) can
be defined by using the Frobenius norm as follows,

d = ‖[I] − [A2][A1]
T ‖F (1)

3. FINITE SETS OF LOCATIONS
Consider the case when a finite number of n displacements
(n≥2) are given and we have to find the magnitude of these
displacements. The displacements depend on the coordinate
frame and the system of units chosen. In order to yield a
left invariant metric we utilize a PF that is derived from
a unit point mass model for a moving body as suggested
by Larochelle [10]. This is done to yield a metric that is
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Figure 3: Unit Point Mass Model

independent of the geometry of the moving body. The center
of mass and the principal axes frame are unique for the
system and invariant with respect to both the choice of fixed
coordinate frames as well as the system of units [6, 2]. The
procedure for determining the center of mass −→c and the
PF associated with the n prescribed locations is described
below. A unit point mass is located at the origin of each
location as shown in Figure 3.

−→c =
1

n

n
∑

i=1

−→
di (2)

where,
−→
di is the translation vector associated with the ith

location (i.e. the origin of the ith location with respect to
F).

The PF is defined such that its axes are aligned with the
principal axes of the n point mass system and its origin is
at the centroid −→c . After finding the centroid of the system
we determine the principal axes of the point mass system.
The inertia tensor is,

[I] =





Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



 (3)

where the principal moments of inertia are defined by,

Ixx =
n

∑

i=1

(y2
i + z2

i )

Iyy =
n

∑

i=1

(z2
i + x2

i ) (4)

Izz =
n

∑

i=1

(x2
i + y2

i )

the products of inertia are,

Ixy = Iyx = −

n
∑

i=1

(xiyi)

Ixz = Izx = −

n
∑

i=1

(xizi) (5)

Iyz = Izy = −

n
∑

i=1

(yizi)

and xi, yi, zi are the components of
−→
di . The principal frame

is thus determined to be

[PF ] =

[ −→v1
−→v2

−→v3
−→c

0 0 0 1

]

(6)
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where, −→vi are the principal axes (eigenvectors) associated
with the inertia tensor [I], see Greenwood [6]. The directions
of the vectors along the principal axes −→vi are chosen such
that the principal frame is a right handed system. However,
Equation (6) does not uniquely define the PF since the
eigenvectors −→vi of the inertia tensor are not unique; both
−→vi and −−→vi are eigenvectors associated with [I]. In order to
resolve this ambiguity and yield a unique PF we choose to
use the PF that is most closely aligned to F.

In the planar case the inertia tensor [I] reduces to

[I] =





Ixx Ixy 0
Iyx Iyy 0
0 0 1



 (7)

and, the principal frame for the planar case reduces to a 3
× 3 matrix as shown:

[PF ] =

[ −→v1
−→v2

−→c
0 0 1

]

(8)

The eight different right handed PF ’s that are possible in
the spatial case are given by,

[ −→v1
−→v2

−→v3 ]
[ −→v2 −−→v1

−→v3 ]
[-−→v1 −−→v2

−→v3 ]
[-−→v2

−→v1
−→v3 ]

[ −→v2
−→v1 −−→v3 ]

[ −→v1 −−→v2 −−→v3 ]
[-−→v2 −−→v1 −−→v3 ]
[-−→v1

−→v2 −−→v3 ]

In the planar case there are four possible orientations of the
PF as seen in Figure 4.

[ −→v1
−→v2 ]

[ −→v2 −−→v1 ]
[ −→v1 −−→v2 ]
[-−→v2

−→v1 ]

The PF that is most closely oriented to the fixed frame is
chosen using the metric on SO(N) given in Equation (1).

4. MAPPING TO SO(N)
The unit disparity between translation and rotation is
resolved by normalizing the translational terms in displace-
ments. The displacements are normalized by choosing a
characteristic length R. The characteristic length used,
based upon the investigations reported in [11, 12], is 24L

π
,

where L is the maximum translational component in the
set of displacements at hand. Larger characteristic lengths
result in an increase in the weight on the rotational terms
whereas smaller ones result in an increase in weight on the
translational terms. It was shown in [12] that this character-
istic length yields an effective balance between translational
and rotational displacement terms for projection metrics.

The elements in SO(N) are derived from the polar decom-
position of the homogenous transformations representing

v 1

Fixed Frame 

v 2

Figure 4: Four Possible Orientations for the PF

planar SE(2) or spatial SE(3) displacements. A number
of iterative algorithms exist for the evaluation of the polar
decomposition. Hingham described a method based upon
Newtons method, see [8]. A simple and efficient iterative
algorithm for the computation of the polar decomposition is
shown by Dubrulle [3]. The algorithm produces mono-tonic
convergence in the Frobenius norm that delivers an IEEE
solution in ∼ 10 or fewer steps.

The elements SE(N) in the planar and spatial cases are
represented by,

Ti =









[R]
−→
t

0 0 1









(9)

and,

Ti =









[R]
−→
t

0 0 0 1









(10)

where [R] represents the rotational component and
−→
t

represents the translational component of the homogenous
transformation of the locations. The scaled transformation
matrices for the planar and spatial cases are thus obtained
to be,

Ti(scaled) =









[R]
−→
t /R

0 0 1









(11)

and

Ti(scaled) =









[R]
−→
t /R

0 0 0 1









(12)

where, R represents the characteristic length used to resolve
the unit disparity between rotation and translation. The
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Figure 5: Principal Frame for 11 Planar Locations

scaled transformation matrices may then be mapped to
SO(N) by using the Dubrulle algorithm for PD.

5. SUMMARY OF THE TECHNIQUE
For a set of n finite rigid body locations the steps to be
followed are:

1. Determine the PF associated with the n locations.

2. Determine the relative displacements from PF to each
of the n locations.

3. Determine the characteristic length R associated with
the n displacements with respect to the PF and scale
the translation terms in each by 1/R.

4. Compute the projections of PF and each of the scaled
relative displacements using the polar decomposition
algorithm.

5. The magnitude of the displacement is defined as the
distance from PF to the scaled relative displacement
as computed via Equation (1). The distance between
any two of the n locations is similarly computed by
the application of Equation (1) to the projected scaled
relative displacements.

6. EXAMPLE: ELEVEN PLANAR LOCA-
TIONS

Consider the rigid body guidance problem proposed by J.
Michael McCarthy, U.C. Irvine for the 2002 ASME Inter-
national Design Engineering Technical Conferences held in
Montreal, Quebec and listed in [1]. The 11 planar locations
are listed in Table 1 and the origins of the coordinate frames
with the respect to the fixed reference frame F are shown
in Figure 3. The centroid of the system is determined to be
−→c = [0.0094 0.6199]T . Next, the principal axes directions

Table 1: Eleven Planar Locations
# x y α (deg) Mag.

1 −1.0000 −1.0000 90.0000 2.0076
2 −1.2390 −0.5529 77.3621 1.7762
3 −1.4204 0.3232 55.0347 1.3165
4 −1.1668 1.2858 30.1974 0.7483
5 −0.5657 1.8871 10.0210 0.2644
6 −0.0292 1.9547 1.7120 0.0807
7 0.2632 1.5598 10.0300 0.2606
8 0.5679 0.9339 30.1974 0.7464
9 1.0621 0.3645 55.0346 1.3159
10 1.6311 0.0632 77.3620 1.7762
11 2.0000 0.0000 90.0000 2.0078

Table 2: Four Desired Locations.
# x y z θ φ ψ Mag.

1 0.00 0.00 0.00 0.0 0.0 0.0 0.95
2 0.00 1.00 0.25 15.0 15.0 0.0 1.24
3 1.00 2.00 0.50 45.0 60.0 0.0 2.21
4 2.00 3.00 1.00 45.0 80.0 0.0 2.44

are determined. The principal axes directions and −→c are
used to determine the principal frame.

[PF ] =





1.0000 0.0067 0.0094
-0.0067 1.0000 0.6199
0.0000 0.0000 1.0000



 (13)

The eleven locations are now determined with respect to
the PF and the maximum translational component is found
to be 1.9947 and the resulting characteristic length R =
24L
π

= 15.239. The 11 locations are then scaled by the
characteristic length in order to find the distance to the
principal frame. The magnitude of each of the displacements
with respect to the PF is listed in Table 1. The distance
between any two of the locations is computed by the
application of Equation (1) to the projected scaled relative
displacements. For example the distance between location
#1 and location #2 was found to be 0.3115.

7. EXAMPLE: FOUR SPATIAL LOCATIONS
Consider the rigid body guidance problem investigated by
Larochelle [10]. The 4 spatial locations are listed in Table 2
with respect to the fixed reference frame F and are shown
in Figure 6. The principal frame is determined to be

[PF ] =









0.8061 0.5692 -0.1617 0.7500
-0.5916 0.7807 -0.2012 1.5000
0.0117 0.2578 0.9661 0.4375
0.0000 0.0000 0.0000 1.0000









(14)

The maximum translational component is found to be
2.0276 and the associated characteristic length is R=15.4899.
The magnitude of each of the displacements with respect to
the PF is listed in Table 2.

8. EXAMPLE: TEN SPATIAL LOCATIONS
Consider the following rigid body guidance problem. The
10 spatial locations with respect to the the fixed reference
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Table 3: Ten Desired Locations.
# x y z Long (θ) Lat (φ) Roll (ψ)

1 5.0 9.0 1.0 100.0 20.0 35.0
2 4.0 8.0 2.0 90.0 30.0 10.0
3 3.0 7.0 3.0 80.0 35.0 20.0
4 4.0 6.0 4.5 70.0 45.0 30.0
5 5.0 5.5 5.0 60.0 57.0 40.0
6 6.0 5.0 6.0 50.0 35.0 50.0
7 7.0 6.0 7.0 40.0 45.0 60.0
8 8.0 7.0 8.0 30.0 50.0 70.0
9 8.5 8.0 8.5 20.0 72.0 80.0
10 9.0 9.0 8.0 10.0 85.0 90.0

frame F are listed in Table 3 and shown in Figure 7. The
principal frame is given by,

[PF ] =









0.603 0.378 -0.702 5.950
0.002 0.880 0.475 7.050
0.797 -0.289 0.530 5.300
0.000 0.000 0.000 1.000









(15)

The maximum translational component L is found to be
4.0920 and the associated characteristic length is R = 24L

π
=

31.2602. The distance from the first location to the principal
frame was found to be 2.8135. The distance between
location #1 and location #2 was found to be 0.7842.

9. CONCLUSIONS
We have developed a metric for a finite set of rigid body
displacements which uses a mapping of the special Euclidean
group SE(N-1). This technique is based on embedding
SE(N-1) into SO(N) via the polar decomposition of the
homogeneous transform representation of SE(N-1). To
yield a useful metric for a finite set of displacements
appropriate for design applications, the principal frame and
the characteristic length are used. A bi-invariant metric on
SO(N) is then used to measure the distance between any
two displacements in SE(N-1). A detailed algorithm for the
application of this method was presented and illustrated by
three examples. This technique has potential applications
in mechanism synthesis and robot motion planning.
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